

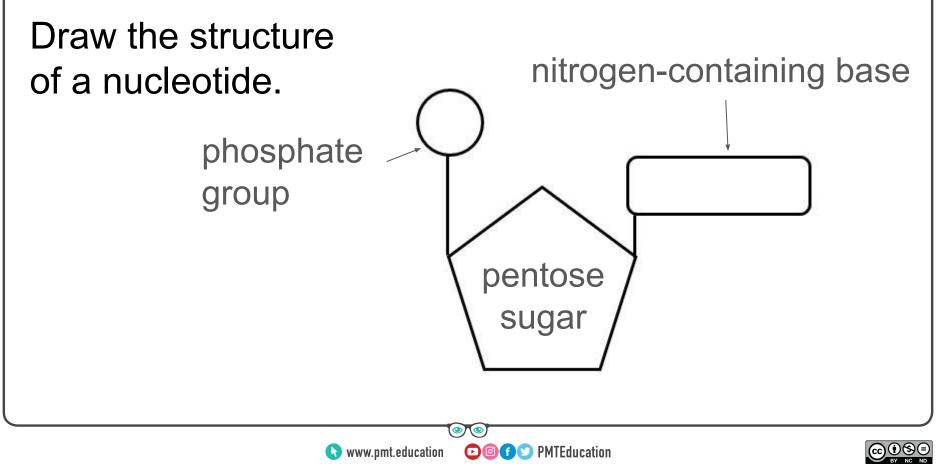
### AQA Biology A-level 1.5 - Nucleic acids 1.6 - ATP

#### Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0








### Draw the structure of a nucleotide.











## Name the pentose sugars in DNA & RNA.







#### Name the pentose sugars in DNA & RNA.

### DNA: deoxyribose

### **RNA:** ribose







### State the role of DNA in living cells.







State the role of DNA in living cells.

Base sequence of genes codes for functional RNA & amino acid sequence of polypeptides.

Genetic information determines inherited characteristics = influences structure & function of organisms.







### State the role of RNA in living cells.







### State the role of RNA in living cells.

- **mRNA**: Complementary sequence to 1 gene from DNA with introns (non-coding regions) spliced out. Codons can be translated into a polypeptide by ribosomes.
- **rRNA**: component of ribosomes (along with proteins)
- **tRNA**: supplies complementary amino acid to mRNA codons during translation







### How do polynucleotides form?







### How do polynucleotides form?

### Condensation reactions between nucleotides form strong phosphodiester bonds (sugar-phosphate backbone).







### Describe the structure of DNA.







### Describe the structure of DNA.

- **double helix** of 2 polynucleotide strands (deoxyribose)
- H-bonds between complementary purine & pyrimidine base pairs on opposite strands: adenine (A) + thymine (T) guanine (G) + cytosine (C)



**DOG PMTEducation** 



## Which bases are purine and which are pyrimidine?







Which bases are purine and which are pyrimidine?

### A & G = 2-ring purine bases T & C & U = 1-ring pyrimidine bases







## Name the complementary base pairs in DNA.







Name the complementary base pairs in DNA.

2 H-bonds between adenine (A) + thymine (T) 3 H-bonds between guanine (**G**) + cytosine (**C**)







## Name the complementary base pairs in RNA.







Name the complementary base pairs in RNA.

2 H-bonds between adenine (A) + uracil (U) 3 H-bonds between guanine (**G**) + cytosine (**C**)







## Relate the structure of DNA to its functions.







### Relate the structure of DNA to its functions.

- sugar-phosphate backbone & many H-bonds provide stability
- long molecule stores lots of information
- helix is compact for storage in nucleus
- base sequence of triplets codes for amino acids
- double-stranded for semi-conservative replication
- complementary base pairing for accurate replication
- weak H-bonds break so strands separate for replication







## Describe the structure of messenger RNA (mRNA).







Describe the structure of messenger RNA (mRNA).

- Long ribose polynucleotide (but shorter than DNA).
- Contains uracil instead of thymine.
- Single-stranded & linear (no complementary base pairing).

www.pmt.education

• Codon sequence is complementary to exons of 1 gene from 1 DNA strand.

**DOfSPMTEducation** 



## Relate the structure of messenger RNA (mRNA) to its functions.







### Relate the structure of messenger RNA (mRNA) to its functions.

NB: functions given in same order as related structural feature on previous slide

- Breaks down quickly so no excess polypeptide forms.
- Ribosome can move along strand & tRNA can bind to exposed bases.
- Can be translated into a specific polypeptide by ribosomes.







## Describe the structure of transfer RNA (tRNA).







Describe the structure of transfer RNA (tRNA).

- Single strand of about 80 nucleotides.
- Folded into clover shape (some paired bases).
- Anticodon on one end, amino acid binding site on the other:
- a) anticodon binds to complementary mRNA codon
- b) amino acid corresponds to anticodon







## Order DNA, mRNA and tRNA according to increasing length.







### Order DNA, mRNA and tRNA according to increasing length.

### tRNA

### mRNA

### DNA







## Why did scientists initially doubt that DNA carried the genetic code?







Why did scientists initially doubt that DNA carried the genetic code?

Chemically simple molecule with few components.







### Why is DNA replication described as 'semiconservative'?







Why is DNA replication described as 'semiconservative'?

- Strands from original DNA molecule act as a template.
- New DNA molecule contains 1 old strand & 1 new strand.







## Outline the process of semiconservative DNA replication.







Outline the process of semiconservative DNA replication.

- 1. **DNA helicase** breaks H-bonds between base pairs.
- 2. Each strand acts as a template.
- 3. Free nucleotides from nuclear sap attach to exposed bases by complementary base pairing.
- 4. **DNA polymerase** catalyses condensation reactions that join adjacent nucleotides on new strand.
- 5. H-bonds reform.







## Describe the Meselson-Stahl experiment.







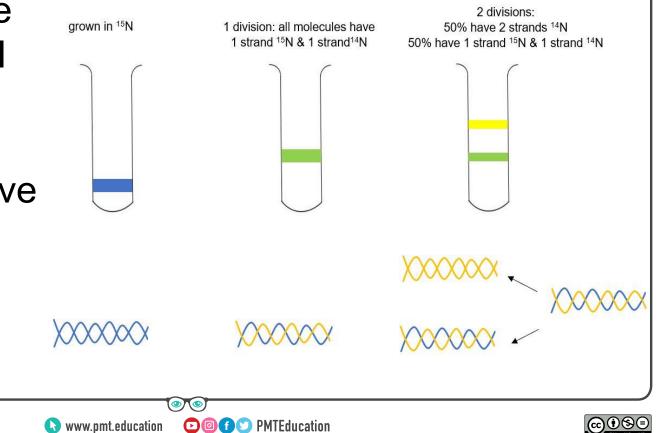
### Describe the Meselson-Stahl experiment.

- Bacteria were grown in a medium containing heavy isotope <sup>15</sup>N for many generations.
- Some bacteria were moved to a medium containing light isotope <sup>14</sup>N. Samples were extracted after 1 & 2 cycles of DNA replication.
- 3. Centrifugation formed a pellet. Heavier DNA (bases made from 15N) settled closer to bottom of tube.








# Explain how the Meselson-Stahl experiment validated semiconservative replication.



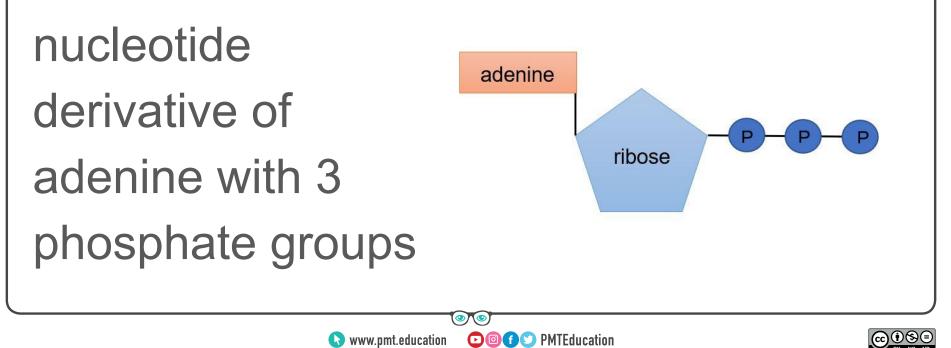




Explain how the Meselson-Stahl experiment validated semiconservative replication.






## Describe the structure of adenosine triphosphate (ATP).







Describe the structure of adenosine triphosphate (ATP).





### Explain the role of ATP in cells.







### Explain the role of ATP in cells.

### ATP hydrolase catalyses ATP $\rightarrow$ ADP + Pi

- Energy released is **coupled** to metabolic reactions.
- Phosphate group phosphorylates compounds to make them more reactive.







### How is ATP resynthesised in cells?







### How is ATP resynthesised in cells?

- **ATP synthase** catalyses condensation reaction between ADP & Pi
- during photosynthesis & respiration







### Explain why ATP is suitable as the 'energy currency' of cells.







Explain why ATP is suitable as the 'energy currency' of cells.

• High energy bonds between phosphate groups.

**DOfSPMTEducation** 

- Small amounts of energy released at a time = less energy wasted as heat.
- Single-step hydrolysis = energy available quickly.

www.pmt.education

• Readily resynthesised.

